Mina工作原理分析

Mina是Apache社区维护的一个开源的高性能IO框架,在业界内久经考验,广为使用。Mina与后来兴起的高性能IO新贵Netty一样,都是韩国人Trustin Lee的大作,二者的设计理念是极为相似的。在作为一个强大的开发工具的同时,这两个框架的优雅设计和不俗的表现,有很多地方是值得学习和借鉴的。本文将从Mina工作原理的角度出发,对其结构进行分析。

总体结构

Mina的底层依赖的主要是Java NIO库,上层提供的是基于事件的异步接口。其整体的结构如下:

IoService

最底层的是IOService,负责具体的IO相关工作。这一层的典型代表有IOSocketAcceptor和IOSocketChannel,分别对应TCP协议下的服务端和客户端的IOService。IOService的意义在于隐藏底层IO的细节,对上提供统一的基于事件的异步IO接口。每当有数据到达时,IOService会先调用底层IO接口读取数据,封装成IoBuffer,之后以事件的形式通知上层代码,从而将Java NIO的同步IO接口转化成了异步IO。所以从图上看,进来的low-level IO经过IOService层后变成IO
Event。

具体的代码可以参考org.apache.mina.core.polling.AbstractPollingIoProcessor的私有内部类Processor。

IoFilterChain

Mina的设计理念之一就是业务代码和数据包处理代码分离,业务代码只专注于业务逻辑,其他的逻辑如:数据包的解析,封装,过滤等则交由IoFilterChain来处理。IoFilterChain可以看成是Mina处理流程的扩展点。这样的划分使得结构更加清晰,代码分工更明确。开发者通过往Chain中添加IoFilter,来增强处理流程,而不会影响后面的业务逻辑代码。

IoHandler

IoHandler是实现业务逻辑的地方,需要有开发者自己来实现这个接口。IoHandler可以看成是Mina处理流程的终点,每个IoService都需要指定一个IoHandler。

IoSession

IoSession是对底层连接的封装,一个IoSession对应于一个底层的IO连接(在Mina中UDP也被抽象成了连接)。通过IoSession,可以获取当前连接相关的上下文信息,以及向远程peer发送数据。发送数据其实也是个异步的过程。发送的操作首先会逆向穿过IoFilterChain,到达IoService。但IoService上并不会直接调用底层IO接口来将数据发送出去,而是会将该次调用封装成一个WriteRequest,放入session的writeRequestQueue中,最后由IoProcessor线程统一调度flush出去。所以发送操作并不会引起上层调用线程的阻塞。

具体代码可以参考org.apache.mina.core.filterchain.DefaultIoFilterChain的内部类HeadFilter的filterWrite方法。

最后附上一个简单的echo server例子来作为本节结束吧。

EchoServer.java

1
2
3
4
5
6
7
8
9
10
11
12
13
public class EchoServer {
  public static void main(String[] args) {
    int PORT = 3333;
    NioSocketAcceptor acceptor = new NioSocketAcceptor();
    acceptor.setHandler(new EchoHandler());
    try {
      acceptor.bind(new InetSocketAddress(PORT));
      System.out.println("Listening on " + PORT);
    } catch (IOException e) {
      e.printStackTrace();
    }
  }
}

EchoHandler.java

1
2
3
4
5
6
  public class EchoHandler extends IoHandlerAdapter {
    @Override
    public void messageReceived(IoSession session, Object message) throws Exception {
      session.write(((IoBuffer)message).duplicate());
    }
  }

工作原理

前面介绍了Mina总体的层次结构,那么在Mina里面是怎么使用Java NIO和进行线程调度的呢?这是提高IO处理性能的关键所在。Mina的线程调度原理主要如下图所示:

Acceptor与Connector线程

在服务器端,bind一个端口后,会创建一个Acceptor线程来负责监听工作。这个线程的工作只有一个,调用Java NIO接口在该端口上select connect事件,获取新建的连接后,封装成IoSession,交由后面的Processor线程处理。在客户端,也有一个类似的,叫Connector的线程与之相对应。这两类线程的数量只有1个,外界无法控制这两类线程的数量。

TCP实现的代码可以参考org.apache.mina.core.polling.AbstractPollingIoAcceptor的内部类Acceptor和org.apache.mina.core.polling.AbstractPollingIoConnector的内部类Connector。

Processor线程

Processor线程主要负责具体的IO读写操作和执行后面的IoFilterChain和IoHandler逻辑。Processor线程的数量N默认是CPU数量+1,可以通过配置参数来控制其数量。前面进来的IoSession会被分配到这N个Processor线程中。默认的SimpleIoProcessorPool的策略是session id绝对值对N取模来分配。

每个Porcessor线程中都维护着一个selector,对它维护的IoSession集合进行select,然后对select的结果进行遍历,逐一处理。像前面提到的,读取数据,以事件的形式通知后面IoFilterChain;以及对写请求队列的flush操作,都是在这类线程中来做的。

通过将session均分到多个Processor线程里进行处理,可以充分利用多核的处理能力,减轻select操作的压力。默认的Processor的线程数量设置可以满足大部分情况下的需求,但进一步的优化则需要根据实际环境进行测试。

线程模型

线程模型原理

从单一的Processor线程内部来看,IO请求的处理流程是单线程顺序处理的。前面也提到过,当Process线程select了一批就绪的IO请求后,会在线程内部逐一对这些IO请求进行处理。处理的流程包括IoFilter和IoHandler里的逻辑。当前面的IO请求处理完毕后,才会取下一个IO请求进行处理。也就是说,如果IoFilter或IoHandler中有比较耗时的操作的话(如:读取数据库等),Processor线程将会被阻塞住,后续的请求将得不到处理。这样的情况在高并发的服务器下显然是不能容忍的。于是,Mina通过在处理流程中引入线程池来解决这个问题。

那么线程池应该加在什么地方呢?正如前面所提到过的:IoFilterChain是Mina的扩展点。没错,Mina里是通过IoFilter的形式来为处理流程添加线程池的。Mina的线程模型主要有一下这几种形式:

第一种模型是单线程模型,也是Mina默认线程模型。也就是Processor包办了从底层IO到上层的IoHandler逻辑的所有执行工作。这种模型比较适合于处理逻辑简单,能快速返回的情况。

第二种模型则是在IoFilterChain中加入了Thread Pool Filter。此时的处理流程变为Processor线程读取完数据后,执行IoFilterChain的逻辑。当执行到Thread Pool Filter的时候,该Filter会将后续的处理流程封装到一个Runnable对象中,并交由Filter自身的线程池来执行,而Processor线程则能立即返回来处理下一个IO请求。这样如果后面的IoFilter或IoHandler中有阻塞操作,只会引起Filter线程池里的线程阻塞,而不会阻塞住Processor线程,从而提高了服务器的处理能力。Mina提供了Thread
Pool Filter的一个实现:ExecutorFilter。

当然,也没有限制说chain中只能添加一个ExecutorFilter,开发者也可以在chain中加入多个ExecutorFilter来构成第三种情况,但一般情况下可能没有这个必要。

请求的处理顺序

在处理流程中加入线程池,可以较好的提高服务器的吞吐量,但也带来了新的问题:请求的处理顺序问题。在单线程的模型下,可以保证IO请求是挨个顺序地处理的。加入线程池之后,同一个IoSession的多个IO请求可能被ExecutorFilter并行的处理,这对于一些对请求处理顺序有要求的程序来说是不希望看到的。比如:数据库服务器处理同一个会话里的prepare,execute,commit请求希望是能按顺序逐一执行的。

Mina里默认的实现是有保证同一个IoSession中IO请求的顺序的。具体的实现是,ExecutorFilter默认采用了Mina提供的OrderedThreadPoolExecutor作为内置线程池。后者并不会立即执行加入进来的Runnable对象,而是会先从Runnable对象里获取关联的IoSession(这里有个down cast成IoEvent的操作),并将Runnable对象加入到session的任务列表中。OrderedThreadPoolExecutor会按session里任务列表的顺序来处理请求,从而保证了请求的执行顺序。

对于没有顺序要请求的情况,可以为ExecutorFilter指定一个Executor来替换掉默认的OrderedThreadPoolExecutor,让同一个session的多个请求能被并行地处理,来进一步提高吞吐量。

时间: 2024-10-26 23:49:51

Mina工作原理分析的相关文章

spi协议及工作原理分析

转自----http://blog.csdn.net/skyflying2012/article/details/11710801 一.概述. SPI, Serial Perripheral Interface, 串行外围设备接口, 是 Motorola 公司推出的一种同步串行接口技术. SPI 总线在物理上是通过接在外围设备微控制器(PICmicro) 上面的微处理控制单元 (MCU) 上叫作同步串行端口(Synchronous Serial Port) 的模块(Module)来实现的, 它允

原理剖析-Netty之服务端启动工作原理分析(下)

一.大致介绍 1.由于篇幅过长难以发布,所以本章节接着上一节来的,上一章节为[原理剖析(第 010 篇)Netty之服务端启动工作原理分析(上)]: 2.那么本章节就继续分析Netty的服务端启动,分析Netty的源码版本为:netty-netty-4.1.22.Final: 二.三.四章节请看上一章节 四.源码分析Netty服务端启动 上一章节,我们主要分析了一下线程管理组对象是如何被实例化的,并且还了解到了每个线程管理组都有一个子线程数组来处理任务: 那么接下来我们就直接从4.6开始分析了:

AsyncTask,IntentService工作原理分析&Android线程池

一,android中的主线程和子线程 android中的主线程可以认为是UI线程,在主线程不可以执行耗时的操作,否则就会给人一种卡顿的感觉.而主线程主要用于处理四大组件,以及处理它们和用户的交互.anroid的子线程的主要功能就是处理耗时操作. 要知道"在android3.0之后,要求网络访问必须在子线程执行,否则会抛出NetWorkOnMainThreadException异常." 二,Android中的线程形态 Android中的线程状态,除了传统的Thread,还包含AsyncT

Buck工作原理分析,连续模式,断续模式

Part01:Buck电路工作原理: 图1-1 Buck电路拓扑结构 Buck电路的拓扑结构如图1-1所示: (1) input接输入电源,既直流电动势: (2) IGBT1为开关管,可以选择以全控型开关管为主,对于高频状态多使用MOSFET,对于高电压状态,多采用IGBT(MOSFET或者IGBT由Buck电路具体工作情况决定).Buck变换器又称降压变换器,通过控制input侧直流电动势的供电与断电实现输出测的降压.开关管的控制方式根据控制信号的不同主要又分为以下三种方式: a) 脉冲调制型

tcpkill工作原理分析

此文已由作者张耕源授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 日常工作生活中大家在维护自己的服务器.VPS有时会碰到这样的情况:服务器上突然出现了许多来自未知ip的网络连接与流量,我们需要第一时间切断这些可能有害的网络连接.除了iptables/ipset, blackhole routing这些常规手段,我们还可以借助一些更轻量级的小工具来临时处理这些情况,如tcpkill. tcpkill使用简介 tcpkill是一个网络分析工具集dsniff中的一个小工具.在

发射极旁路电容作的工作原理分析与理解

先明确一下音频范围: 音频频率范围一般可以分为四个频段:低频段(30-150Hz):中低频段(30-150Hz):中低频(150-500Hz):中高频段(500-5000Hz):高频段(5000-0000Hz) 1.典型的发射极旁路电容电路 T3049NLT 通常三极管发射极回路都要串联一只电阻,当这只电阻上并联一只电容时就构成发射极旁路电容电路.如图3-65所示,电路中,VT1构成一级音频放大器,Cl为VT1发射极旁路电容.(1)旁路电容工作原理.VT1发射极电阻Rl上并联了一只容量比较大的旁

Servlet工作原理分析

最近在看<Java Web技术内幕>的Servlet工作原理,有点深奥和难以理解,于是乎,想通过一个简单的Demo将书上的思路理一遍,对Servlet有个更透彻更深的了解. Servlet类:HelloWorld.java package com.cqupt; import javax.servlet.ServletException; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletReq

激光切割机的工作原理分析

激光切割机是一种最新的技术,目前已经运用到各种行业,包金属切割.玻璃切割雕刻等广泛领域. 激光切割机工作原理:激光通过激光器产生后由反射镜传递并通过聚集镜照射到加工物品上,使加工物品(表面)受到强大的热能而温度急剧增加,使该点因高温而迅速的融化或者汽化,配合激光头的运行轨迹从而达到加工的目的. 原文地址:https://www.cnblogs.com/duanmeng133/p/8661741.html

jdk TreeMap工作原理分析

TreeMap是jdk中基于红黑树的一种map实现.HashMap底层是使用链表法解决冲突的哈希表,LinkedHashMap继承自HashMap,内部同样也是使用链表法解决冲突的哈希表,但是额外添加了一个双向链表用于处理元素的插入顺序或访问访问. 既然TreeMap底层使用的是红黑树,首先先来简单了解一下红黑树的定义. 红黑树是一棵平衡二叉查找树,同时还需要满足以下5个规则: 1.每个节点只能是红色或者黑点 2.根节点是黑点 3.叶子节点(Nil节点,空节点)是黑色节点 4.如果一个节点是红色