hdu 2177

取(2堆)石子游戏

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1101    Accepted Submission(s): 658

Problem Description

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。如果你胜,你第1次怎样取子?

Input

输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,且a<=b。a=b=0退出。

Output

输出也有若干行,如果最后你是败者,则为0,反之,输出1,并输出使你胜的你第1次取石子后剩下的两堆石子的数量x,y,x<=y。如果在任意的一堆中取走石子能胜同时在两堆中同时取走相同数量的石子也能胜,先输出取走相同数量的石子的情况.

Sample Input

1 2

5 8

4 7

2 2

0 0

Sample Output

0

1

4 7

3 5

0

1

0 0

1 2

威佐夫博奕,输出取法

#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<algorithm>
#include<cstring>
#include<stdlib.h>
#include<math.h>
#include<map>
using namespace std;
#define ll long long
int main(){
    int n,m;
    while(cin>>n>>m,n+m){
        if(n>m) swap(n,m);
        int k=m-n;
        if(int(k*1.0*(1+sqrt(5))/2)==n&&m==n+k){
            cout<<0<<endl;
            continue;
        }
        cout<<1<<endl;
        int a,b;
        for(int i=1;i<=n;i++)
            if(n-i==int(k*1.0*(1+sqrt(5))/2)&&m-i==n-i+k) cout<<n-i<<" "<<m-i<<endl;
        for(int j=m;j>=0;j--){
            a=n,b=j;
            if(a>b) swap(a,b);
            k=b-a;
            if(a==int(k*1.0*(1+sqrt(5))/2)&&b==a+k) cout<<a<<" "<<b<<endl;
        }
    }
}
时间: 12-23

hdu 2177的相关文章

hdu 2177(威佐夫博奕)

题意:容易理解,在威佐夫博奕的基础上新增加了一条要求:就是如果在赢得条件下,输出第一步怎么走. 分析:使用暴力判断,详细见代码. 代码: #include<stdio.h> #include<string.h> #include<math.h> int a, b; int main() { double x = (1 + sqrt(5.0))/2.0; int i,k,temp,n,m; while(scanf("%d%d",&a,&

HDU 2177 威佐夫博奕 hdu1527升级版

取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1075    Accepted Submission(s): 649 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同

hdu 2177 取(2堆)石子游戏

天资愚笨啊,网上的一大堆没看懂...... 总结百科的方法为: 1.a==b 同时减去a 得到0,0 2.a==a_k      b>b_k b -(b-b_k) 3.a==a_k     b<b_k 同时拿走a_k-a_(b-a_k) 得到 a_(b-a_k)    a_(b-a_k) + b-a_k 4.a>a_k       b==b_k 从a中拿走 a-a_k 5.a<a_k       b==b_k 5.1 a==a_ j   (j<k) b-(b-b_ j) 得到

HDU 2177 取(2堆)石子游戏 威佐夫博弈

题目来源:HDU 2177 取(2堆)石子游戏 题意:中文 思路:判断是否是必败态就不说了 做过hdu1527就知道了 现在如果不是必败态 输出下一步所有的必败态 题目要求先输出两堆都取的方案 首先 a = b 直接2堆取完 a != b 因为bi = ai+i 现在知道ak 和 bk 那么 k = bk-ak 得到k 求出 aj 和 bj 如果ak-aj == bk-bj && ak-aj > 0(aj, bj)是必败态 输出aj bj 然后是只取一堆的情况 假设a不变 求出对应的

hdu 2177 取(2堆)石子游戏(威佐夫博奕)

题目链接:hdu 2177 这题不是普通的 Nim 博弈,我想它应该是另一种博弈吧,于是便推 sg 函数打了个 20*20 的表来看,为了方便看一些,我用颜色作了标记,打表代码如下: 1 #include<cstdio> 2 #include<cstring> 3 #include<string> 4 #include<map> 5 #include<algorithm> 6 #include<windows.h> 7 using n

取(2堆)石子游戏 HDU 2177 博弈论

取(2堆)石子游戏 HDU 2177 博弈论 题意 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.如果你胜,你第1次怎样取子? 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,

HDU 2177——威佐夫博弈

题目: Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.如果你胜,你第1次怎样取子? Input 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,

hdu 2177 威佐夫博弈变形

取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1587    Accepted Submission(s): 962 Problem Description 有 两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆 中同时取走

hdu 2177 取(2堆)石子游戏 (威佐夫博奕)

//,在威佐夫博奕的基础上新增加了一条要求:就是如果在赢得条件下,输出第一步怎么走. # include <stdio.h> # include <algorithm> # include <iostream> # include <math.h> # include <string.h> using namespace std; int main() { int a,b,i,k; while(~scanf("%d%d",&a