Given n points (1 dimensional) and q segments, you have to find the number of points that lie in each of the segments. A point pi will lie in a segment A B if A ≤ pi ≤ B.
For example if the points are 1, 4, 6, 8, 10. And the segment is 0 to 5. Then there are 2 points that lie in the segment.
Input
Input starts with an integer T (≤ 5), denoting the number of test cases.
Each case starts with a line containing two integers n (1 ≤ n ≤ 105) and q (1 ≤ q ≤ 50000). The next line contains n space separated integers denoting the points in ascending order. All the integers are distinct and each of them range in [0, 108].
Each of the next q lines contains two integers Ak Bk (0 ≤ Ak ≤ Bk ≤ 108) denoting a segment.
Output
For each case, print the case number in a single line. Then for each segment, print the number of points that lie in that segment.
Sample Input
1 //几组数据
5 3 // 5个数 3个区间
1 4 6 8 10 //输入这5个数
0 5 //第一个区间
6 10 //第二个区间
7 100000 //第三个区间
Sample Output
Case 1:
2 //第一个区间有2个数在区间中 1 和4
3 // 第二个区间有3个数在区间中 6 8 10
2 //第三个区间有 2个数在区间中 7 和 100000
题意:给出一个n位数递增的数列,然后q个区间查询,每个查询问指定的区间覆盖了数列中几个数?
用 C++ STL 里的 low_bound 和upper_bound
upper_bound() 返回数列中第一个大于所查询数的位置,或者没有大于所查询的数返回数列长度(越界)
lower_bound() 返回数列中第一个等于或者大于所查询数的位置,或者没有等于,大于所查询数返回数列长度(越界)
#include<stdio.h> #include<algorithm> using namespace std; int a[100010]; int main () { int n,m,i; int N, L=0,k; int x, y; scanf("%d",&N); while (N--) { scanf ("%d %d", &n, &m); for (i=0; i<n; i++) scanf ("%d", &a[i]); printf ("Case %d:\n", ++L); while (m --) { scanf ("%d %d", &x, &y); k=upper_bound (a,a+n,y)-a; //实际上是一个指针 k-=lower_bound (a,a+n,x)-a; printf ("%d\n", k); } } return 0; }